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Abstract—Training large language models (LLMs) encounters
challenges in GPU memory consumption due to the high memory
requirements of model states. The widely used Zero Redundancy
Optimizer (ZeRO) addresses this issue through strategic shard-
ing but introduces communication challenges at scale. To tackle
this problem, we propose AMSP, a system designed to optimize
ZeRO for scalable LLM training. AMSP incorporates three flexi-
ble sharding strategies: Full-Replica, Full-Sharding, and Partial-
Sharding, and allows each component within the model states (Pa-
rameters, Gradients, Optimizer States) to independently choose
a sharding strategy as well as the device mesh. We conduct a
thorough analysis of communication costs, formulating an op-
timization problem to discover the optimal sharding strategy.
Additionally, AMSP optimizes distributed LLM training by ef-
ficiently overlapping communication with computation. Evalua-
tions demonstrate up to 52% Model FLOPs Utilization (MFU)
when training the LLaMA-based model on 1024 GPUs, resulting
in a 1.56 times improvement in training throughput compared
to newly proposed systems like MiCS and ZeRO++.

I. INTRODUCTION

Large Language Models (LLMs) have demonstrated excep-
tional performance in various tasks, with the relationship be-
tween model size and performance often following a power-
law relationship. Despite the prevailing trend of training giant
models like GPT-3 with 175 billion parameters, recent stud-
ies indicate that optimal performance may be achieved with
smaller models trained on larger datasets [1]. Emerging LLMs
like LLaMA [2], featuring 7 billion to 30 billion parameters.

Training LLMs significantly demands on GPU memory, pri-
marily due to the substantial memory consumption of model
states, encompassing parameters (P ), gradients (G), and op-
timizer states (OS). Additional memory is allocated for ac-
tivations and temporary buffers. For instance, when training
LLaMA-7B, a substantial 112GB of memory is required for
model states, surpassing the capacity of an 80GB NVIDIA
A100 GPU. To address this challenge, ZeRO, implemented in
Deepspeed [3] and PyTorch FSDP [4], introduces a sharding
strategy to alleviate redundant memory allocations. ZeRO-
1 distributes optimizer states across GPUs, ZeRO-2 further
shards gradients and ZeRO-3 extends this approach to param-
eters, gradients, and optimizer states. This strategic sharding
optimizes memory usage, enabling efficient training of large
models within GPU constraints. ZeRO could work in cooper-
ation with 3D parallelism [5] and has become widely adopted
in distributed LLMs training.

ZeRO heavily relies on collective communication for effec-
tive model states management, introducing challenges in large-
scale LLM training due to the substantial transmission cost.
In our experiments, training a LLaMA-7B model on 8 GPUs
using ZeRO-1 achieves a model FLOPs utilization (MFU) of
63%, but scaling to 1024 GPUs with the same batch size
results in a significant performance reduction, with the MFU
dropping to 36%. The costly communication of ZeRO can be
attributed to three primary factors: 1) a significant bandwidth
discrepancy between inter-node and intra-node networks, 2)
an increase in collective communication latency as the com-
munication scale grows, and 3) the use of a small micro-batch
size per GPU on numerous GPUs, exacerbating the compute-
to-communication ratio imbalance.

Several approaches have been proposed to reduce the com-
munication overhead of ZeRO with improved memory utiliza-
tion. ZeRO++ [6] achieves this by maintaining a secondary
parameters shard within small subgroups, effectively reducing
communication latency when collecting them. MiCS [7] shards
all model states components within subgroups and replicates
them across subgroups, reducing communication scale and
consequently reducing communication latency, leading to en-
hanced training performance. Despite these efforts, when scal-
ing LLM training to a large extent, ZeRO++ and MiCS exhibit
suboptimal speedup ratios due to two factors. Firstly, the in-
flexible model states sharding mechanism results in suboptimal
communication costs. This limitation is evident in the case of
MiCS, where scaling LLaMA-7B training from 8 GPUs to
1024 GPUs leads to a significant decrease in model training
performance, even falling below the efficiency of ZeRO-1.
Secondly, the inefficiency of the overlap mechanism poses a
challenge. For instance, an efficient implementation of MiCS
with a streamlined communication-computation overlap can
outperform DeepSpeed-MiCS by a factor of 2× during the
training of LLaMA-13B on 1024 GPUs.

We propose AMSP for reducing the communication over-
head of ZeRO for training LLMs at scale. To achieve this goal,
AMSP incorporates three flexible sharding strategies—Full-
Replica, Full-Sharding, and Partial-Sharding—allowing each
component within the model states (P, G, OS) to indepen-
dently choose a sharding strategy. The introduced sharding
factors (s0p × s1p, s

0
g × s1g, s

0
os × s1os) control the number of

GPUs and the device mesh over which the tensors are sharded.
Given this flexibility, we analyze the memory consumption
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and communication costs for each sharding dimension. Then,
we formulate an optimization problem aimed at discovering
optimal sharding factors that minimize communication costs
while adhering to the constraint of GPU memory capacity.
AMSP implements an execution engine tailored for training
LLMs, incorporating these flexible sharding factors to achieve
optimized communication efficiency during training.
AMSP further optimizes distributed LLM training by effi-

ciently overlapping communication with computation. When
parameters sharding is enabled, AMSP employs a strategy to
prefetch parameters for the next layer using AllGather dur-
ing the forward pass, while simultaneously performing cur-
rent layer computations. In the backward pass, AMSP strate-
gically schedules ReduceScatter operations for gradient
synchronization within each parameters sharding subgroup,
avoiding conflicts and ensuring that computations continue
without waiting for communications to finish. Additionally,
with activation re-computation, AMSP carefully manages the
additional forward computation in the backward pass, retaining
prefetched parameters for immediate use. These overlapping
strategies collectively reduce GPU idle time and significantly
enhance the training performance of LLMs.

Extensive evaluations show a significant system perfor-
mance of AMSP on training LLaMA-based models. On 1024
Nvidia Ampere GPUs, the MFU of AMSP is 51%, 52%, and
42% on LLaMA-7B, LLaMA-13B, and LLaMA-30B training.
In comparison, MiCS demonstrates lower MFU values at 35%,
33%, and 29% for the same models, ZeRO++ shows the least
MFU among the three, with MFU rates at merely 4%, 6%, and
5% for the 7B, 13B, and 30B models, respectively. Compared
to MiCS and ZeRO++, AMSP improves the training throughput
by a factor of 1.4− 12.7 on 1024 GPUs for training LLaMA-
based models. AMSP1 has been used for training InternLM [8]
on thousands of GPUs. Our efforts also encompass an exhaus-
tive study characterizing a six-month development workload
trace of LLM collected from our GPU datacenter [9].

II. BACKGROUND

We provide a brief introduction to the essential background
of LLM training and the associated challenges to improve
performance. Table I gives notations used in this work.

A. LLM Architecture

LLMs like GPT-3 [10] and LLaMA [2] widely adopt
the Transformer [11] architecture with multiple layers. Each
Transformer layer comprises a list of modules, such as linear,
multi-head-attention (MHA), and norm modules. The input
and output dimensions for each Transformer layer are denoted
as B × S × H , where B represents the micro-batch size, S
indicates the sequence length, and H is the hidden dimension.
The relationship between the model size of LLMs and their
performance is typically governed by a power-law relationship.
While there has been a trend to train giant models like GPT-
3 with 175B parameters, existing studies suggest that opti-
mal model performance may be attained with smaller models

1Please visit https://github.com/InternLM/InternEvo to access the system.

TABLE I
NOTATIONS USED IN THIS WORK.

Notation Meaning

D Memory consumption of a GPU.
T Time consumption.
Φ Model parameters count during training.
N Total number of GPU nodes used for training.
R Number of GPUs per computational node.
B Micro-batch size (sequences per micro-batch).
M Number of micro-batches.
L Number of layers of the model.
K Number of modules within a layer of the model.
sdp, stp, spp Size of data, tensor and pipeline parallelism.
sp, sg , sos Sharding factors of parameters, gradients and model states.

TABLE II
POPULAR LLMS AND THEIR PARAMETERS COUNT.

Model # Parameters Model # Parameters

GPT-3 175B BLOOM 175B
LLaMA 7B, 13B, 33B, 65B Mistral 7B
LLaMA2 7B, 13B, 70B InternLM2 7B, 20B
Cerebras-GPT 1.3B, 2.7B, 6.7B, 13B Baichuan2 7B, 13B

trained on larger datasets [1]. As illustrated in Table II, recently
introduced LLMs like LLaMA and InternLM typically feature
7B to 30B parameters.

B. Distributed LLM Training

Efficiently training LLMs at scale in GPU clusters involves
utilizing 3D parallelism. Data Parallelism (DP) divides input
data into chunks, distributing them across GPUs, where each
GPU independently computes gradients, later synchronized
through AllReduce communication [12]. Tensor Parallelism
(TP) distributes parameters across GPUs along specific dimen-
sions for parallel training. Megatron-LM employs TP to parti-
tion linear layers along the row or column dimension, integrat-
ing collective communication operations for consistent results
[5]. Pipeline Parallelism (PP) evenly divides a model’s Trans-
former layers into multiple stages, distributing them across
GPUs. A scheduler splits an input batch into micro-batches,
alternating between forward and backward computations [13]
[14]. Two consecutive pipeline stages exchange intermediate
data through point-to-point communication.

C. ZeRO

Training LLMs results in significant memory consumption,
largely due to the occupation of GPU memory by model states,
which comprise tensors containing parameters (P), gradients
(G), and optimizer states (OS). The remaining memory is allo-
cated to activations and temporary buffers. In the context of a
model with Φ parameters, employing mixed precision training
alongside the Adam optimizer [15], it necessitates 2Φ, 2Φ, and
12Φ bytes of GPU memory for P, G and OS, respectively. As
an illustrative example, the LLaMA-7B model requires 112GB
of memory for its model states, exceeding the memory capac-
ity of an NVIDIA A100 GPU (80GB). As shown in Figure

2
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Fig. 1. Overview of GPU memory allocation for model states with different
strategies. ZeRO-1 and ZeRO-3 significantly reduce memory consumption for
model states compared to standard data parallelism. MiCS and ZeRO++ are
proposed to mitigate communication overhead, particularly cross-node com-
munication time, in comparison to the ZeRO approach.

1, ZeRO reduces redundant memory usage for model training
by sharding model states [16].

ZeRO-1 splits optimizer states across GPUs (sos>1). In the
training phase, each GPU independently computes gradients
through forward and backward computations, which are then
synchronized across sdp GPUs using AllReduce. Each GPU
updates specific portions of the model parameters. The most
recent model parameters for a GPU are gathered from other
GPUs using the AllGather operation. ZeRO-2 extends this
approach by further sharding gradients across GPUs (sg =
sos > 1). Each GPU retains only the gradients corresponding
to its optimizer states segment after the reduction operation.

ZeRO-3, also implemented in FSDP [4], employs the shard-
ing strategy on model parameters, gradients, and optimizer
states (sp = sg = sos > 1). Before each forward and back-
ward computation, individual GPUs execute the AllGather
operation to assemble the complete set of model parameters
and subsequently discard them post-computation. The syn-
chronization of gradients across GPUs is achieved through
Reduce-Scatter. Each GPU updates its corresponding
shard of model parameters using the maintained optimizer
states and gradients at the end of each step.

III. CHALLENGES AND MOTIVATION

ZeRO has gained extensive adoption across various training
frameworks, such as DeepSpeed [3], FSDP [4], and Colos-
salAI [17], owing to its user-friendly interface and scalability
across hundreds of GPUs. Despite leveraging high-bandwidth
RDMA networks, challenges emerge in the form of poor Qual-
ity of Service (QoS) during distributed LLM training on large-
scale GPU clusters. This can be mainly attributed to significant
communication overhead.

A. High Communication Overhead

ZeRO necessitates extensive usage of collective communica-
tion for managing parameters and gradients. The transmission
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Fig. 2. Micro-benchmark of training LLaMA-7B across a scale of GPUs,
ranging from 8 to 512, while maintaining a global batch size of 4M tokens.
The micro-batch size B is consistently set to 1 in all tests. Panel (a) illustrates
the GPU memory consumption of model states. Panel (b) depicts the time
taken for forward and backward computations. Panel (c) presents the latency
of three communication operations with a fixed message size of 256MB.

cost across large-scale clusters presents a challenge, as it can-
not be easily mitigated through computation-communication
overlapping. When training a LLaMA-7B model on 8 GPUs
using ZeRO-1, the model FLOPs utilization (MFU) attains
63% in our test-bed. Scaling the training to 1024 GPUs with
the same batch size results in a notable performance reduction,
with the MFU dropping to 36%. Similarly, scaling LLaMA-
13B training from 8 GPUs to 1024 GPUs with ZeRO-3 leads
to a substantial MFU reduction from 47% to 4%.

Three main factors contribute to the costly communications
for large-scale LLM training with ZeRO. Firstly, there exists
a notable discrepancy between inter-node network bandwidth
and intra-node NVLINK bandwidth. High-performance DGX-
A100 nodes offer 600GB/s intra-node bidirectional bandwidth
per GPU and provide 400GB/s inter-node bidirectional band-
width per node. The bandwidth ratio between intra-node and
inter-node measures at 2 in our test-bed. Secondly, the latency
of collective communication operations demonstrates a posi-
tive correlation with communication scale [18] [19] [20] and
illustrated in Figure 2(c). Figure 3 further illustrates a reduc-
tion in the effective bandwidth of communication operations
utilized by ZeRO, scaling from 8 GPUs to 512 GPUs. Thirdly,
the global batch size limitation for convergence efficiency im-
poses the use of a very small batch size per GPU when training
on numerous GPUs. As depicted in 2 (b), the computation
time of the LLaMA-7B model training linearly reduces from
8 GPUs to 512 GPUs while maintaining a consistent 4M
batch size. This reduction adversely affects the compute-to-
communication ratio, leading to a communication bottleneck.

B. Trade-off between Communication and Memory

A trade-off exists between memory utilization and commu-
nication cost in distributed LLM training. Initially, the com-
munication cost can be effectively reduced by diminishing the
communication scale. This involves limiting communications
to a smaller group of GPUs, potentially within the same node,
which mitigates the overall communication cost. In addition,
as depicted in Figure 2 (a), scaling ZeRO to a large scale does
not yield substantial memory savings compared to a smaller
size. Consequently, various approaches have been proposed to
reduce communication overhead with higher memory usage.

ZeRO++ [6] keeps a secondary shard of parameters while
sharding other model states across the cluster (sp=sg=sos=

3
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Fig. 3. Performance evaluation of collective communication operations using
NCCL. The assessment is conducted with varying message sizes (in bytes).
GPU nodes are linked using 4 Mellanox Infiniband HDR NICs (800 Gbps
bandwidth in total). The notation 8×A GPUs indicates that the tests were
conducted on A nodes, with each node housing 8 NVIDIA Ampere GPUs
(A800) connected by NVLINK.

sdp), as shown in Figure 1. In the forward phase, it collects
parameters across all GPUs and maintains a secondary shard
of parameters within a small subgroup of GPUs, potentially
within the same node. During the backward phase, it collects
parameters from this secondary shard. Additionally, ZeRO++
uses quantization to compress parameters and gradients, effec-
tively reducing inter-node communication size. Note that we
would not enable configurations related to the quantization of
ZeRO++ to ensure consistent model quality.

MiCS [7] and FSDP [4] facilitate the sharding of model
states within a subgroup and replicate them across subgroups
(sp=sg=sos<sdp), as shown in Figure 1. These approaches
employ AllGather to collect parameters within a subgroup
for both forward and backward computation and synchronize
gradients across the cluster using ReduceScatter. Conse-
quently, MiCS and FSDP contribute to improved training per-
formance by effectively reducing the communication scale. It
is crucial to configure an appropriate subgroup size to prevent
Out-Of-Memory (OOM) errors.

C. Motivation

Despite efforts to reduce communication costs, ZeRO++
and MiCS still exhibit poor speedup ratios when scaling LLM
training to a large scale. This is attributed to their inflexible
model states sharding mechanism, requiring sp = sg = sos ≤
sdp in all cases. Such a configuration may not be optimal for
training LLMs with diverse model sizes and hyper-parameters.
In addition, the inefficiency of the overlap mechanism in
ZeRO++ and MiCS also poses a challenge. For instance, when
scaling LLaMA-7B training from 8 GPUs to 1024 GPUs with
MiCS, MFU decreases from 50% to 35% in our test-bed.
In this scenario, MiCS even exhibits lower performance than
ZeRO-1, highlighting the drawbacks of the inflexible model
states sharding mechanism.

In this study, the three components of model states (P, G,
OS) are sharded into independent subgroups and replicated
across these subgroups, following the condition sp≤sdp, sg≤
sdp, sos≤sdp. This flexibility allows us to fine-tune the trade-
off between communication and GPU memory by configuring
sp, sg, sos. By doing so, we may achieve minimal communica-
tion cost for distributed LLM training through individualized

configuration of the communication scale on P, G, and OS,
while respecting GPU memory constraints.

Taking LLaMA-7B as an illustrative example, we adopt the
configuration of sp = sg = 1, sos = 8 for training. In this
setting, each GPU retains a complete copy of parameters and
gradients, while each node stores a full copy of optimiza-
tion states. During training, gradients are synchronized across
clusters using AllReduce, and each GPU obtains the latest
parameters within the same node through AllGather at the
end of each step. In our test-bed, scaling LLaMA-7B training
from 8 GPUs to 1024 GPUs with this configuration results in
an acceptable MFU reduction from 64% to 51%.

IV. MODEL STATES SHARDING AND ANALYSIS

In this section, we assume that there is no tensor parallelism
or pipeline parallelism during the training, which implies that
stp = spp = 1. This simplification allows us to focus on the
impact of the discussed sharding strategies on communication
and memory aspects.

A. Performance Model of Collective Communication

The α − β cost model [21] is widely employed to char-
acterize the performance of collective communication [22].
Taking the example of a ring-based AllReduce on p GPUs,
where the input size is v, and the physical bandwidth between
two GPUs is w, the input is evenly split into p chunks. In
the first stage, each chunk undergoes p − 1 rounds of reduc-
tion to each GPU, constituting a ReduceScatter operation
with a time complexity of trs = (p − 1)(α + v

w×p ), where
α denotes the latency per transmission. Then, each reduced
chunk at every GPU is broadcast to other GPUs, constituting
an AllGather operation with the same time complexity as
ReduceScatter. The overall time complexity of the ring-
based AllReduce is given by tar = 2(p− 1)(α+ v

w×p ).
However, predicting collective communication time with

high accuracy using the α − β cost model is challenging
in certain scenarios. First, in addition to the ring algorithm,
NCCL introduces new communication algorithms like Tree
[23], Collnet, CollnetDirect, and CollnetChain. Consequently,
a single cost model struggles to formulate the communication
time for all these algorithms. Second, In-Network Aggregation
solutions are widely implemented in production GPU clusters.
These solutions offload AllReduce onto network switches
to accelerate and scale distributed training [24] [25] [26].

In this work, we adopt a straightforward yet effective
profiling-based approach to model the performance of collec-
tive communication. Specifically, we utilize

t(o, v, p0 × p1) = v/w(o, v, p0 × p1)

to evaluate the time consumption of a collective communi-
cation operator (o) with a given data size (v) and a spec-
ified participant GPU device mesh (p0 × p1, where p0 de-
notes the number of GPUs in a node, and p1 is the num-
ber of nodes). Here, w(o, v, p0 × p1) represents the effective
bandwidth obtained through performance profiling on the tar-
get GPU cluster in advance, as illustrated in Figure 3. In
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Fig. 4. Optimizing model states sharding through the dependency rule. In this instance, when sp = sg = 2, there’s no need to set sos = 1 as it would store
redundant optimized states, incurring additional communication costs.

cases where v is not profiled, we employ the interpolation
method to predict the effective bandwidth and communica-
tion time. This work focuses on four key collective commu-
nication operations: AllReduce(AR), AllGather(AG),
ReduceScatter(RS) and Broadcast(BC).

B. Flexible Model States Sharding with Dependency Rule

We adopt three sharding strategies, namely Full-Replica,
Full-Sharding, and Partial-Sharding, and provide the flexibil-
ity for each of the three components within the model states
(P, G, and OS) to independently select a sharding strategy.
To encapsulate these strategies, we introduce sharding factors
sp = s0p × s1p, sg = s0g × s1g and sos = s0os × s1os, representing
the number of GPUs and the device mesh over which the
tensors of P, G, and OS are sharded, respectively. Setting the
factor to 1 implies full replication of the tensor, simplifying
to vanilla data parallelism if all components (P, G, and OS)
choose the Full-Replica strategy. Conversely, setting the factor
equal to the DP size results in complete tensor sharding, with
each GPU holding 1/sdp of the tensor. For instance, in ZeRO-
3, all components (P , G, and OS) choose the Full-Sharding
strategy. Partial-Sharding emerges when the factor falls be-
tween 1 and sdp, indicating tensor sharding across a subgroup
of GPUs and replication across subgroups.

A dependency rule is crucial when flexibly sharding the
model states to avoid unnecessary data movement and storage.
Throughout the training, the framework employs local param-
eters for gradient computation and synchronized gradients for
updating local optimizer states. If a GPU oversees extra gra-
dients or optimizer states unrelated to its local parameters,
launching additional communication becomes necessary. This
incurs significant and avoidable expenses. Figure 4 illustrates
an instance of this scenario, highlighting the impact when
setting sp = sg = 2, sos = 1. Before independently sharding
P , G, and OS, we establish the following constraints:

R ≥ s0dp ≥ s0os ≥ s0g ≥ s0p, N ≥ s1dp ≥ s1os ≥ s1g ≥ s1p,

where s0dp and s1dp is the device mesh of DP ranks, R denotes
the GPU count per node, and N is the node number. As shown
in Figure 4, adhering to the dependency avoids unnecessary
data movement and storage.

C. Communication Time Analysis

In this subsection, we analyze the communication cost asso-
ciated with individually partitioning parameters, gradients, and
optimizer states. Figure 5 provides an overview of the inserted
collective communication operations for each component.

1) Parameters Sharding: When s0p × s1p = sp > 1, the Φ
parameters of a model are split into sp shards, with each GPU
managing one shard. As shown in Figure 5(a), during each
forward and backward pass of every micro-batch in a step,
the training system orchestrates the collection of parameters
shards from other GPUs to reconstruct the complete set of
model weights required for computations. This is achieved
using AllGather on sp GPUs. In each micro-batch of a
step, after the gradients are generated during the backward
phase, the training framework launches ReduceScatter to
aggregate and distribute gradients across sp GPUs. The train-
ing framework performs AllGather and ReduceScatter
at the granularity of a module within a Transformer layer. The
input size for i-th module of a layer is 2Φi (using FP16). The
communication time attributable to parameters sharding for M
micro-batches of a step is given by:

Tp = ML

K∑
i=0

(
2t(AG, 2Φi, s

0
p × s1p) + t(RS, 2Φi, s

0
p × s1p)

)
,

where L denotes the number of layers and K is the number
of modules of a layer.

Taking Figure 4 (a) as an example, when s0p × s1p = 2× 1,
AllGather and ReduceScatter are executed within the
same node. parameters sharding allows for overlapped com-
munication with computation. During the forward or backward
computation of a module, it is feasible to execute AllGather
and ReduceScatter for the subsequent module.

2) Optimizer States Sharding: When s0os × s1os = sos > 1,
a total of sos GPUs collectively possess a complete duplicate
of optimizer states. Following parameters sharding with sp,
each parameters is stored and replicated across sdp/sp GPUs.
In this configuration, optimizer states may exhibit redundancy,
with sdp/sp replicas distributed across the cluster. To reduce
this redundancy, we introduce a solution by allowing sos > sp,
affording flexibility to reduce redundancy. In this scenario, the
optimizer states for Φ/sp parameters are shared by sos/sp

5



Fig. 5. Analysis of inserted collective communication operations when individually sharding parameters, gradients, and optimizer states.

Fig. 6. Sharding scheme for optimizer states. (a) shards each optimizer states
tensor into multiple devices along with the corresponding optimizer states.
(b) distributes each tensor of optimizer states in its entirety.

GPUs, forming an optimizer states sharding subgroup. Illus-
trated in Figure 4 (b), GPU-0 and GPU-2 share common pa-
rameters shards but maintain distinct optimizer states shards,
forming an optimizer states sharding subgroup.

After the backward pass of the last micro-batch in a step,
each GPU updates Φ/sos parameters based on the optimizer
states. Before the update phase, each GPU should gather and
aggregate gradients for parameters within its optimizer states.
To optimize this process, we employ AllReduce on gradi-
ents across sdp/sp GPUs sharing the same set of parameters
(in the amount of Φ/sp), as illustrated in Figure 5 (c). In
Figure 4 (b), we execute AllReduce on GPU-0/2/4/6. Given
that sos > sp, each GPU receives additional gradients not
managed by its optimizer states. To resolve this issue, we
employ a select & drop mechanism, enabling each GPU to
exclusively select the necessary gradients from the output of
the AllReduce.

Following the completion of parameters updates, it is es-
sential to spread updated parameters among GPUs within the
same optimizer states sharding subgroup. For example, In
Figure 4 (b), GPU-0 should send its updated parameters to
GPU-2. The choice of the collective communication primitive
relies on the sharding scheme employed for optimizer states.
Typically, two mechanisms govern the sharding of optimizer
states across GPUs, as illustrated in Figure 6. 1) The intra-
tensor approach involves evenly splitting a single parameters
along with its states into multiple shards, which are then
distributed to different GPUs. In this scenario, AllGather
proves effective, ensuring that each GPU receives all updated
values for parameters stored in its local memory. 2) The inter-
tensor approach distributes each parameters and its states as

a whole across devices, using a greedy algorithm to balance
GPU memory usage. In this case, direct usage of AllGather
is not feasible, as each GPU may not have an identical number
of updated parameters. To address this, the updated parameters
can be spread by broadcasting each shard separately using an
NCCL group call.

While both sharding schemes remain compatible with mix-
precision training using FP16, the inter-tensor approach is
recommended for FP8 training [27]. This preference is pivotal
since the distribution of per-tensor scaling factors becomes
imperative when dealing with FP8 shards. Consequently, we
adopt the inter-tensor approach in this work. Following the
optimizer update stage, a series of Broadcast operations are
initiated on sos/sp GPUs to disseminate updated parameters.

The training system launches 2Φ/U AllReduce opera-
tions with a specified bucket size U to synchronize gradi-
ents for a model with Φ trainable parameters (utilizing FP16).
The AllReduce communication time attributed to optimizer
states sharding for a given step is expressed as:

T 0
os =

2Φ

Usp

(
t(AR, U,

s0dp
s0p

×
s1dp
s1p

)

)
.

For disseminating updated parameters, the training system uti-
lizes a group of Broadcast operations. Each Broadcast
operation processes an input of size 2Φ/sos on average, and
the system executes sos/sp such operations. The Broadcast
communication time attributable to optimizer states sharding
during a step is given by:

T 1
os =

sos
sp

(
t(BC,

2Φ

sos
,
s0os
s0p

× s1os
s1p

)

)
.

optimizer states sharding facilitates the potential for over-
lapped communication and computation. During the backward
computation of the i-th layer, we can perform AllReduce
on gradients generated on layer i+ 1. Simultaneously, during
the forward computation of the i-th layer, it is also possible to
broadcast the latest parameters (updated in the previous step)
for the next layer.

3) Gradients Sharding: When s0g × s1g = sg > 1, a total
of sg GPUs collectively hold a complete copy of gradients
generated at each micro-batch of every step. As depicted in
Figure 4, if sg = sp, each GPU retains Φ/sp gradients, ac-
cumulating them at every micro-batch based on the parameter
sharding mechanism. In this work, we introduce the flexibility
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to set sg > sp to conserve GPU memory. For simplicity, we
impose the following constraints on the selection of sg:

sg ∈ {sp, sos}.

In the scenario where sg > sp, each GPU initiates an
AllReduce operation on sg/sp GPUs to aggregate and dis-
tribute gradients in every micro-batch, excluding the last one.
Following the aggregation, each GPU retains only the gradi-
ents allocated to it, discarding the surplus. For instance, in
Figure 4 (c), GPU-0 and GPU-2 can employ such a select
& drop mechanism to shard gradients. It is noteworthy that
alternative approaches might leverage ReduceScatter to
achieve similar outcomes. However, the inter-tensor approach
in sharding optimizer states leads to uneven shard sizes per
GPU, making ReduceScatter less suitable. Thus, we opt
for AllReduce on gradients, preserving only the relevant
ones. Assuming AllReduce is executed with bucket size U ,
the communication time attributable to gradients sharding of
a step can be expressed as:

Tg = (M − 1)
2Φ

Usp

(
t(AR, U,

s0g
s0p

×
s1g
s1p

)

)
.

Gradients sharding can also overlap communication with com-
putation. During the backward computation for i-th layer, we
can concurrently execute AllReduce for (i+ 1)-th layer.

4) Summary: Based on the aforementioned analysis, we
can conclude that the single-step communication time of dis-
tributed LLM training with a flexible model states sharding
strategy is the sum of three components:

Tcomm(s0p, s
1
p, s

0
g, s

1
g, s

0
os, s

1
os) = Tp + Tg + T 0

os + T 1
os.

D. GPU Memory Consumption Analysis

In the context of mixed-precision training with the Adam
optimizer, the GPU memory consumed by model states during
training can be expressed as the sum of memory allocated for
sharded parameters, gradients, and optimization states:

Dmodelstate(s
0
p, s

1
p, s

0
g, s

1
g, s

0
os, s

1
os) =

2Φ

s0ps
1
p

+
2Φ

s0gs
1
g

+
12Φ

s0oss
1
os

.

Additionally, the total GPU memory consumption, Dtotal, can
be encapsulated by:

Dtotal = Dmodelstate +Dactivation +Dtmp,

where Dactivation is the memory consumed by activations dur-
ing training, and Dtmp denotes the temporary memory used
by communication buffers or other transient variables. Existing
methodologies [5] [16] for analyzing and predicting activation
memory usage are seamlessly integrated into our present study.

V. SYSTEM DESIGN & COMMUNICATION OVERLAP

To reduce the communication overhead of ZeRO for effi-
cient LLM training, we introduce AMSP. It leverages an ex-
panded model states sharding space and is adept at identifying
the most communication-efficient factors. We focus on how
AMSP systematically optimizes the training performance with
a flexible model states sharding strategy.

Fig. 7. Overview of AMSP architecture and workflow. The Planner identifies
the optimal solution for model states sharding. The Executor executes LLM
training using the selected strategy, and enhances communication performance
through overlap and placement optimization.

A. System Architecture

Figure 7 illustrates the two components of AMSP: the Plan-
ner and the Executor. (1) The Planner identifies the optimal
solution for model states sharding. This component integrates
three modules: the Pre-Filter, narrowing the search space based
on specific rules; the Communication-Profiler, offering pre-
dictions for collective communication time; and the Solver,
constructed by a memory and communication cost model to
identify the optimal strategy. (2) The Executor is accountable
for executing LLM training using the selected strategy. This
component integrates two essential modules to enhance com-
munication efficiency. The Communication Overlap strategy
offers a fine-grained overlap for computation and communica-
tion. Moreover, AMSP employs the topology-aware Commu-
nication Placement strategy to reduce network communication
across spine switches, enhancing overall efficiency.

Workflow. 1 AMSP begins by having users define LLM
architecture, specifying metadata such as layer number and
sequence length, along with hyper-parameters like micro-batch
size and micro-batch number. Users also provide settings for
the training cluster, including the total number of GPUs and
GPU memory capacity. 2 The Planner eliminates certain
strategies that may incur additional communication costs, re-
sulting in a set of alternative strategies. The Communication-
Profiler, operating offline, provides communication time data,
aiding the Planner in estimating step time for these alterna-
tives. 3 Using an optimization problem solver, the Planner
identifies the optimal strategy. 4 Subsequently, the Executor
runs the training job using the chosen strategy, enhanced by
Communication Overlap and topology-aware Communication
Placement strategy.
AMSP utilizes real-system profiling to ascertain the effec-

tive bandwidth of three used collective communication oper-
ations (i.e., AllGather, ReduceScatter, AllReduce
and Broadcast) across diverse communication sizes and
device meshes. Consequently, AMSP estimates the communi-
cation latency induced by model states sharding.
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Fig. 8. Example of sharding model states within the same node. In (a)
assigning s0p = 1, s1p = 2 results in increased cross-node communication
caused by AllGather and ReduceScatter. In (b) with sos = 2, setting
s0os = 1, s1os = 2 creates cross-node Broadcast.

B. Execution Planner

The Execution Planner generates the optimal combination
strategy for the input model with the provided hardware infor-
mation. AMSP formulates an optimization problem to search
for the optimal {s0p, s1p, s0g, s1g, s0os, s1os} by minimizing the sum
of communication costs subject to memory constraints. The
integer programming problem is defined as follows:

Minimize Tcomm(s0p, s
1
p, s

0
g, s

1
g, s

0
os, s

1
os) (1)

Subject to Dtotal ≤ GPU_Memory_Capacity (2)

1 ≤ s0p ≤ s0g ≤ s0os ≤ s0dp ≤ R (3)

1 ≤ s1p ≤ s1g ≤ s1os ≤ s1dp ≤ N (4)

s0i × k = s0dp, k ∈ Z, i ∈ {p, g, os} (5)

s1j × k = s1dp, k ∈ Z, j ∈ {p, g, os} (6)

s0i = s0dp, if s1i > 1, i ∈ {p, g, os} (7)

This problem minimizes the communication cost of LLM
training with respect to the GPU memory capacity (Equa-
tion 2) and the dependency rules outlined in Section IV-B
(Equation 3, 4). Instead of exhaustively iterating through all
possible solutions for {s0p, s1p, s0g, s1g, s0os, s1os}, we optimize the
efficiency of assignment strategy exploration by incorporating
two filters. Firstly, s0dp should be divisible by s0p,g,os (Equation
5), ensuring the participation of all GPUs within a node in
the training process. Additionally, s1dp should be divisible by
s1p,g,os (Equation 6), allowing for the utilization of all nodes
in the training. Secondly, to minimize cross-node communi-
cation (Equation 7), a priority is placed on employing fewer
nodes when sharding P , G, and OS independently. For in-
stance, in Figure 8(a), selecting (s0p = 1, s1p = 2) necessitates
launching AllGather and ReduceScatter on two nodes

Fig. 9. Overlapping strategy for parameters sharding and corresponding con-
trol hooks. (a) illustrates the concurrent execution of AllGather for pre-
fetching parameters with the forward computation. (b) presents the overlap of
AllGather and ReduceScatter with backward computation. (c) demon-
strates the communiction-computation overlap strategy during the backward
phase when activation recomputation is enabled.

every micro-batch, while opting for (s0p = 2, s1p = 1) results
in reduced cross-node communication costs. In Figure 8(b),
setting (s0os = 1, s1os = 2) induces cross-node AllGather
for spreading updated parameters per step, whereas (s0os =
2, s1os = 1) confines this communication within a node. Based
on these filters, AMSP can efficiently employ a brute-force
search method to obtain the optimal solution, effectively nav-
igating the solution space with reduced complexity.

C. Computation-Communication Overlap

AMSP uses specific hooks of PyTorch 2.1, as detailed in
Table III, to facilitate the necessary NCCL communications for
sharding P , G, and OS. Timely initiation of these operations
is important for ensuring both correctness and efficiency.

TABLE III
HOOKS USED BY AMSP

Module Hook Name

torch.nn.modules register_forward_hook
torch.nn.modules register_forward_pre_hook
torch.nn.modules register_full_backward_hook
torch.nn.modules register_full_backward_pre_hook
torch.Tensor register_hook

1) Overlap for Parameters Sharding: As shown in Figure
9 (a), prior to initiating the forward computation in a layer, a
sequence of AllGather operations is launched to proactively
fetch parameters for each module (such as linear modules) of
the subsequent layer. This strategic prefetching enables AMSP
to seamlessly overlap the computation of the current layer with
communication tasks for the next layer, enhancing overall ef-
ficiency. To coordinate this process for each module, AMSP
leverages register_forward_pre_hook to await the
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completion of the corresponding AllGather. Upon conclud-
ing the forward computation for a module, AMSP releases gath-
ered parameters, triggered by register_forward_hook.

In the backward pass, each module within a layer com-
putes gradients for both its weights (GradWeight) and its
input (GradInput). After the computation of GradWeight,
AMSP initiates ReduceScatter on it for gradients distri-
bution and synchronization. In scenarios without activation
recomputation, launching all AllGather operations simulta-
neously to fetch parameters of modules in the next layer is not
optimal. This is because such operations would obstruct the
execution of ReduceScatter, leading to sub-optimal train-
ing performance. To address this challenge, we adopt a more
strategic approach by fetching parameters of only the next
module, triggered by register_backward_pre_hook.
Consequently, as shown in Figure 9 (b), AMSP efficiently over-
laps AllGather with the computation of GradWeight.
AMSP also overlaps ReduceScatter with the computa-
tion of GradInput. Furthermore, we decouple the life-cycle
of ReduceScatter from the backward function. In cases
where the ReduceScatter operation is not completed by
the time GradInput computation concludes, AMSP seam-
lessly proceeds to the backward computation of the next mod-
ule instead of causing unnecessary blocking.

As we decouple the life-cycle of ReduceScatter from
the backward function, the completion of the backward func-
tion does not guarantee the availability of the true gradients for
the corresponding weights. Therefore, an additional post-hook
is applied to the AccumulateGrad of each parameter, ensuring
the completion of the corresponding ReduceScatter oper-
ation before utilizing these gradients for subsequent commu-
nication or computation tasks. Examples of such tasks include
launching AllReduce operations on this data, facilitating
gradient synchronization across data parallelism ranks.

In Figure 9 (c), with the activation recomputation mecha-
nism enabled, AMSP requires an additional forward computa-
tion for a layer during the backward pass. At the beginning of
this secondary forward pass for a layer, AMSP initiates a se-
ries of AllGather operations to proactively fetch parameters
for the subsequent layer. Importantly, in contrast to the first
forward phase, AMSP retains the gathered parameters after the
secondary forward computation for subsequent gradients com-
putation. Following the computation of GradWeight, AMSP
proceeds to initiate a ReduceScatter operation on it. AMSP
efficiently overlaps both AllGather and ReduceScatter
operations with computation during the backward phase.

2) Overlap for Optimizer States Sharding: During the back-
ward phase of the last micro-batch, each GPU aggregates
gradients for parameters within its optimizer states by using
AllReduce across data parallelism ranks. To optimize this
process, we implement a bucketing strategy where a parameter
is placed in a bucket after its backward computation [12]. Once
a bucket is full, all gradients of the parameters within it are flat-
tened into a contiguous buffer. Then, we execute AllReduce
on this buffer without blocking the backward computation of
the remaining layers. This approach is triggered by hooks on

Fig. 10. Examples of communication placement. When s1p,g,os > 1, (a) de-
picts an instance where groups of s1p,g,os nodes are organized under the same
spine switch, facilitating intra-switch communication, which is the preferred
approach by AMSP. (b) showcases a scenario in which the groups of s1p,g,os
nodes are distributed across different spine switches, necessitating extensive
cross-switch communication.

the AccumulateGrad of parameters.
We utilize the asynchronous communication mechanism of

NCCL to overlap parameters broadcast with the forward com-
putation of the next step. It is crucial to ensure that all param-
eters have updated values before being used for both compu-
tation and communication. We implement two optimizations
to address this challenge. Firstly, we register a hook for each
module by using register_forward_pre_hook, ensur-
ing that the parameters to be used are the most recent ones be-
fore any computation or communication takes place. Secondly,
we manage the order of forward computation to align with
the sequence of parameters broadcast. This synchronization
ensures that the parameters used in the forward computation
are the ones that have been successfully broadcasted, avoiding
unnecessary blocking during the forward phase.

3) Overlap for Gradients Sharding: In the case of sg > sp,
the system initiates AllReduce operations on sg/sp GPUs
for gradients aggregation and distribution in each micro-batch
excluding the final one. To further enhance efficiency, a buck-
eting strategy, similar to the one employed for optimizer states
sharding, is leveraged. The AllReduce communication pro-
cess seamlessly overlaps with the backward computation, fa-
cilitated through hooks integrated into the AccumulateGrad
of parameters. Following the AllReduce, a GPU rank only
retains gradients pertinent to it, releasing other gradients to
conserve GPU memory.

D. Communication Placement

To further improve training performance, AMSP tries to min-
imize communication traffic across spine-switches within the
leaf-spine network architecture, which is commonly used in
current GPU data centers. Typically, GPU nodes are connected
to leaf-switches, and these leaf-switches are interconnected
by spine-switches. When GPUs are not under the same leaf
switch, communication has to go through spine switches, lead-
ing to increased latency and potential network congestion. In
this study, when s1p,g,os > 1, AMSP aims to optimize collective
communications by utilizing fewer leaf switches as illustrated
in Figure 10 (a), instead of incurring extensive cross-switch

9



8 32 128 512 1024
(a) LLaMA-7B

0

0.2

0.4

0.6

0.8

M
FU

8 32 128 512 1024
(b) LLaMA-13B

0

0.2

0.4

0.6

0.8

M
FU

8 32 128 512 1024
(c) LLaMA-30B

0

0.2

0.4

0.6

0.8

M
FU

oom oo
m

ZeRO-1 ZeRO-3 ZeRO++ MiCS Our Work

Fig. 11. End-to-end evaluation results (MFU) of training LLaMA-based Mod-
els from 8 GPUs to 1024 GPUs.

TABLE IV
STRATEGIES USED FOR SHARDING P , G AND OS .

Model Approach1 s0p s1p s0g s1g s0os s1os

LLaMA-7B

Our Work 1 1 1 1 8 1
ZeRO-1 1 1 1 1 R N
ZeRO-3 R N R N R N
MiCS 8 1 8 1 8 1
ZeRO++2 R N R N R N

LLaMA-13B

Our Work 4 1 4 1 8 1
ZeRO-3 R N R N R N
MiCS 8 1 8 1 8 1
ZeRO++2 R N R N R N

LLaMA-30B

Our Work 8 1 8 1 8 4
ZeRO-3 R N R N R N
MiCS 8 2 8 2 8 2
ZeRO++2 R N R N R N

1 We set s0dp = R, s1dp = N in this experiment.
2 ZeRO++ uses s0p = 8, s1p = 1 to shard secondary parameters.

communication as shown in Figure 10 (b). For instance, with
(s0p = 8, s1p = 4), AMSP strategically groups four nodes under
the same leaf switches to perform collective communications
like AllGather and ReduceScatter. This strategic ap-
proach aims to minimize inter-switch communication latency,
thereby reducing the additional communication overhead in-
troduced by the sharding of model states.

VI. EVALUATION

A. Experimental Setup

1) Implementation: We use an iterative solver to dynam-
ically optimize communication costs based on the provided
configuration. To uphold comparable computational perfor-
mance, AMSP incorporates FlashAttention-v2 [28] and adopts
mixed-precision training with BF16, aligning with baseline
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Fig. 12. End-to-end evaluation results (TGS) of training LLaMA-based Mod-
els from 8 GPUs to 1024 GPUs.

systems. We also introduce a user-friendly interface enabling
users to customize the sharding of P , G, and OS through
predefined configurations or leverage the integrated solver to
automatically determine the optimal sharding strategy.

2) Testbed: We evaluate the training performance of three
popular LLMs: LLaMA-7B, LLaMA-13B, and LLaMA-30B.
The training is conducted on a dedicated cluster with 128 GPU
servers. Each server is equipped with 8 GPUs and 128 CPU
cores, resulting in a total of 1024 NVIDIA Ampere GPUs
(A800). Each GPU is outfitted with 80GB of memory, in-
terconnected through NVLink within a node, and inter-node
communication is facilitated by 4 Mellanox HDR InfiniBand
without SHARP.

3) Baselines & Evaluation Metrics: We conduct a compre-
hensive benchmark of AMSP, comparing it against DeepSpeed-
ZeRO1, DeepSpeed-ZeRO3 [16], DeepSpeed-ZeRO++ [6],
and DeepSpeed-MiCS [7]. Our evaluation focuses on key per-
formance metrics, including Model FLOPs Utilization (MFU)2

[29] and Tokens per GPU per Second (TGS). The sequence
length is held constant at 4096 tokens in all experiments. The
sequence length is fixed at 4096 tokens. Micro-batch size is
configured to 1 sequence with 4096 tokens, while the global-
batch size is set to 4 million tokens. The micro-batch number
is 128 with 8 GPUs (i.e. M = 128); however, training with
1024 GPUs reduces the micro-batch number to 1 (i.e. M = 1).
Since the core objective of AMSP is reducing communication
overhead in ZeRO, we adopt s0dp = R, s1dp = N across all
experiments, excluding tensor or pipeline parallelism.

2We calculate FLOPs and MFU using the formula in Megatron-LM. As de-
tailed in [28], while the FLOPs due to attention should be halved, with causal
mask, only approximately half the number of elements in attention needs
computation. For consistency, we adhere to the literature formula (without
dividing attention FLOPs by 2) as in FlashAttention and many other libraries.
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Fig. 13. Peak Memory of training LLaMA-7B/13/30B from 8 to 1024 GPUs.

4) System Configurations: Table IV presents the configu-
rations utilized in AMSP and the baselines. AMSP maintains
a uniform set of configurations when scaling training from 8
GPUs to 1024 GPUs. In ZeRO++, the secondary shard num-
ber of the parameters is tuned for optimal performance, with
(s0p = 8, s1p = 1), and quantization is not enabled. Activation
recomputation is applied during the training of LLaMA-30B,
while it is disabled for LLaMA-7B and LLaMA-13B. The
communication-computation overlap configurations are con-
sistently enabled in all baselines. To ensure a fair comparison
with baselines, we disabled the overlap between Broadcast
and forward computation during the end-to-end system eval-
uations, as these baselines do not provide this function.

B. End-to-End System Evaluation

1) Scalability Performance: Figure 11 illustrates the MFU
during the training of models of varying sizes with different
GPU number, while Figure 12 provides corresponding TGS
results. AMSP exhibits higher performance across all cases
than the basesline systems. Specifically, it achieves 51%, 52%,
and 42% MFU when training LLaMA-7B, LLaMA-13B, and
LLaMA-30B models with 1024 GPUs, respectively.

When training LLaMA-7B with 8 GPUs, ZeRO-1 exhibits
a very similar MFU to AMSP. The observation indicates that
both systems achieve comparable computation efficiency. This
similarity arises from the fact that they share the same commu-
nication cost. Importantly, this result underscores that AMSP,
despite introducing innovative communication optimizations,
maintains a comparable level of computation efficiency with
baseline systems, given the commonality in utilizing the same
computation engine, such as FlashAttention.

As the GPU number increases, AMSP demonstrates a com-
paratively stable decrease in MFU and TGS across LLaMA-
7B, LLaMA-13B and LLaMA-30B models when compared to

Fig. 14. Trace segment for the LLaMA-7B model training on 32 GPUs with
a micro-batch size of 4096 tokens using DeepSpeed-ZeRO3/MiCS/ZeRO++.
This trace captures the backward phase of the last micro-batch within a step.

other baselines. Expanding from 8 to 1024 GPUs, AMSP ex-
periences a modest 15% reduction in MFU, while ZeRO-3 can
exhibit reductions of up to 88%. The decrease in AMSP’s MFU
is attributed to the reduced computational load per GPU as the
number of GPUs grows, leading to a higher communication-
to-compute ratio. Notably, the MiCS approach, which employs
a subgroup communication strategy, also exhibits a relatively
gentle downward trend, similar to AMSP. However, due to
its limited array of configuration options, MiCS consistently
maintains an MFU below that of AMSP. Zero++, while of-
ten outperforming ZeRO-3, faces challenges such as out-of-
memory (OOM) issues. For instance, when training LLaMA-
30B on 32 GPUs, Zero++ encountered an OOM situation,
whereas other methods achieved an MFU of around 40%.

When training LLaMA-7B on 1024 GPUs, AMSP achieves
MFU 51%, surpassing other baselines. ZeRO-1 follows closely
with 36% MFU, while MiCS ranks third at 35%. ZeRO-3 and
ZeRO++ lag significantly behind, achieving approximately 4%
MFU. In comparison to ZeRO-1, AMSP effectively constrains
the Broadcast operation, which is used to disseminate up-
dated parameters to other GPUs at the end of each step, involv-
ing only 8 GPUs. This strategic approach minimizes commu-
nication overhead. On the other hand, MiCS also reduces the
communication scale of AllGather and ReduceScatter
within a node for parameters fetch and gradients distribution,
yet it generates more traffic than AMSP. Consequently, MiCS
exhibits lower performer compared to ZeRO-1 when training
LLaMA-7B on 1024 GPUs. For LLaMA-13B and LLaMA-
30B training on 1024 GPUs, AMSP maintains its leading po-
sition with MFU values of 51% and 43%, respectively. MiCS
follows with 33% for LLaMA-13B and 29% for LLaMA-30B.

11



Fig. 15. Training trace segment for LLaMA-7B, LLaMA-13B, and LLaMA-30B models using AMSP. This trace encompasses both the forward and backward
phases of a training step. LLaMA-7B and LLaMA-13B are trained with a micro-batch size of 4096 tokens and a micro-batch number of 2 on 32 GPUs, while
LLaMA-30B utilizes 64 GPUs for training.

2) GPU Memory Analysis: Figure 13 illustrates the max-
imum allocated memory during training for various systems.
ZeRO-3 stands out as the most memory-efficient, primarily
due to its aggressive splitting of model states across all GPUs.
The memory consumption of ZeRO-3 becomes stable in large-
scale training. For instance, when scaling from 512 GPUs to
1024 GPUs, the memory consumption for training LLaMA-
30B changes from 16GB to 15GB with ZeRO-3. Both ZeRO++
and MiCS demonstrate enhanced training performance at the
expense of higher memory consumption. MiCS, in particular,
prioritizes redundant storage to optimize communication effi-
ciency, resulting in approximately double the memory usage
compared to ZeRO-3 for the same models on 1024 GPUs. This
trade-off highlights the strategic use of memory resources to
achieve superior training outcomes with these approaches.
AMSP consistently exhibits high memory consumption, par-

ticularly noticeable when comparing it to MiCS. For instance,

when training the 7B model on 1024 GPUs, AMSP’s memory
footprint is twice that of MiCS, despite achieving a more
efficient utilization of memory. Although AMSP and MiCS
demonstrate similar memory consumption for the 13B and 30B
models, their memory utilization compositions vary. AMSP
attains higher training efficiency by dynamically managing
the memory allocation of parameters, gradients and optimizer
states. This dynamic allocation strategy allows AMSP to op-
timize memory usage effectively, contributing to its superior
training efficiency despite the higher memory footprint.

C. Performance Gap Analysis

Our investigation reveals that the superior training perfor-
mance of AMSP can be attributed to two crucial optimiza-
tions: a flexible sharding strategy for parameters, gradients,
and optimizer states, and an advanced methodology for or-
chestrating the overlap between communication and com-
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Fig. 16. Effects (MFU) of Sharding Strategy in training LLaMA-based Mod-
els from 8 GPUs to 1024 GPUs.

putation. Our findings underscore that existing implemen-
tations of ZeRO-3, MiCS, and ZeRO++ within the Deep-
Speed framework encounter significant hurdles in achiev-
ing effective overlap between communication and compu-
tation, particularly during the backward phases. This chal-
lenge is notably evident in the inefficient utilization of idle
compute resources during the ReduceScatter commu-
nications in ZeRO-3 and ZeRO++, as well as the com-
bined ReduceScatter and AllReduce communications
in MiCS, as depicted in Figure 14. In this figure, we present a
trace segment for the LLaMA-7B model training on 32 GPUs
with a micro-batch size of 4096 tokens using DeepSpeed-
ZeRO3/MiCS/ZeRO++. This trace captures the backward
phase of the last micro-batch within a step. It reveals instances
of computation resource bubbles during the backward pass.
Even when the communication-computation overlap setting
is enabled, DeepSpeed-ZeRO3/MiCS/ZeRO++ fails to effec-
tively overlap ReduceScatter with computation. Addition-
ally, in DeepSpeed-MiCS, the ReduceScatter operation
also blocks the concurrent execution of AllReduce. We
shown the complete trace in Appendix A.
AMSP excels in orchestrating the seamless overlap of com-

munications with computation, leading to a substantial im-
provement in computing resource utilization, as depicted in
Figure 15. During the forward pass, as shown in Figure 15
(b) and (c), AMSP facilitates overlap by concurrently com-
puting each layer alongside the AllGather communica-
tions necessary for acquiring the subsequent layer’s param-
eters. During the backward phase, AMSP skillfully overlaps
AllReduce and ReduceScatter communications with
computation. Moreover, AllReduce can be executed con-
currently with AllGather and ReduceScatter. Addi-
tionally, AMSP synchronizes the broadcasting of updated pa-
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Fig. 17. Effects (TGS) of Sharding Strategy in training LLaMA-based Models
from 8 GPUs to 1024 GPUs.

rameters with the forward computation of the next step, as
illustrated in Figure 15 (a).

D. Ablation Study

We present ablation experiments to substantiate the effec-
tiveness of the flexible sharding strategy in AMSP,

1) Analysis of Sharding Strategy: We conducted experi-
ments to validate the effectiveness of our sharding strategy
by comparing our Planner-based optimal configurations with
MiCS’s rule-based config under the same execution engine.
Figure 16 illustrates the MFU results, while Figure 17 pro-
vides corresponding TGS results. Our observations reveal that
with a 1024-GPU setup, the optimal configuration for AMSP
at model sizes of 7B, 13B, and 30B yields MFU values that
are 1.3x, 1.1x, and 1.13x higher, respectively, compared to
the MiCS configuration. Moreover, implementing MiCS under
AMSP results in higher performance compared to the imple-
mentation on DeepSpeed. This improvement can be attributed
to our optimizations for communication-computation overlap.

2) Analysis of Overlap: We conducted a series of experi-
ments to assess the efficacy of our approach in communication-
computation overlap. Our investigation involved systematically
deactivating overlap optimizations in the following sequence:
initially, we disabled the overlap of Broadcast operations
for spreading updated parameters. Subsequently, we turned
off the overlap of AllReduce for gradient synchroniza-
tion. Finally, we deactivated the overlap of AllGather and
ReduceScatter in parameter sharding, resulting in a state
of no overlap during the training process. The experiments
were conducted using 64 GPUs, and we varied the compu-
tational loads by adjusting the micro-batch number M . The
results of these experiments, showcasing the effects of overlap,
are presented in Table V.
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TABLE V
EFFECTS OF OVERLAP STRATEGY ON TRAINING LLAMA-BASED MODELS WITH MICRO-BATCH SIZES FROM 1 TO 8 USING 64 GPUS. (TGS AND MFU)

Overlap Strategy TGS MFU

M = 1 M = 2 M = 4 M = 8 M = 1 M = 2 M = 4 M = 8

7B

Overlap AllGather/ReduceScatter+AllReduce+Broadcast 3525 4119 4416 4503 0.57 0.62 0.65 0.67
Overlap AllGather/ReduceScatter+AllReduce 3346 3991 4329 4438 0.54 0.60 0.64 0.65
Overlap AllGather/ReduceScatter 2812 3609 4070 4286 0.45 0.54 0.60 0.63
No Overlap 2812 3609 4070 4286 0.45 0.54 0.60 0.63

13B

Overlap AllGather/ReduceScatter+AllReduce+Broadcast 1918 2082 2183 2230 0.53 0.58 0.61 0.62
Overlap AllGather/ReduceScatter+AllReduce 1895 1920 2160 2184 0.53 0.54 0.60 0.61
Overlap AllGather/ReduceScatter 1630 1782 2033 2126 0.45 0.49 0.56 0.59
No Overlap 1527 1552 1608 1666 0.42 0.43 0.44 0.46

30B

Overlap AllGather/ReduceScatter+AllReduce+Broadcast 825 856 872 880 0.48 0.50 0.50 0.51
Overlap AllGather/ReduceScatter+AllReduce 759 814 847 859 0.44 0.47 0.49 0.50
Overlap AllGather/ReduceScatter 651 740 814 842 0.37 0.43 0.47 0.49
No Overlap 557 654 678 719 0.33 0.38 0.39 0.42

In large-scale distributed LLM training, particularly with
1024 GPUs, the limitations imposed by the global batch size
necessitate setting the micro-batch number M to 1. Under such
conditions, the impact of our overlap optimizations becomes
significantly more pronounced. For instance, in our experi-
ments with a 7B model, disabling the overlap of Broadcast
leads to a 5% drop in MFU. Further disabling the overlap opti-
mization for AllReduce causes an additional 16% decline in
MFU. When investigating scenarios with sp > 1 and sos > 1,
overlaps for Broadcast, AllReduce, AllGather, and
ReduceScatter significantly contribute to MFU improve-
ments. For the 13B model, communication overlap could en-
hance the overall system performance by a factor of 1.25
compared to the case without any overlap setting. Meanwhile,
for the 30B model, the improvement is even more substantial,
reaching a factor of 1.48. These values demonstrate the essen-
tial nature of overlap optimizations in boosting the efficiency
of LLM training.

VII. RELATED WORK

Model parallelism and 3D parallelism. Model parallelism is
represented by two approaches: tensor parallelism and pipeline
parallelism. Tensor parallelism [5] involves partitioning spe-
cific layer weights and introducing additional AllReduce com-
munication. Pipeline parallelism [13], [14], [30], [31] divides
the layers of the model horizontally among each rank. Recent
innovations have proposed methods that autonomously discern
parallelism approaches by intricately melding both data and
model parallelism for distinct operators within the model. To
illustrate, solutions like Alpa [32], OptCNN [33], FlexFlow
[34], [35], and TensorOpt [36] incorporate both data and tensor
parallelism. These leverage a variety of search algorithms to
refine and enhance the execution of blueprints. However, while
these automated parallelism solutions focus on optimizing the
sharding and placement strategies for the optimal operators
within the computational graph, they overlook strategies re-
lated to the orthogonal placement of the model states.
Large-scale communication optimization. Some works [4],
[18], [19], [37] try to overlap communication with computa-

tion to mitigate communication costs. ZeRO++ and Espresso
[38] utilize quantization and compression techniques to reduce
communication volume, albeit at the expense of precision.
DEAR [39] aggregates multiple small communications using
fixed-size buffers to reduce communication overheads. Hetu
[40] leverages hierarchical all-to-all to minimize inter-node
communication volume under poor inter-node communication.
Similarly, Hybrid AllReduce [41] attempts to decompose a
single collective communication primitive into a combination
of multiple subgroup communications.

VIII. CONCLUSION

We propose AMSP to address the communication challenge
of distributed LLM training at scale with ZeRO. The proposed
AMSP introduces a novel approach by incorporating flexible
sharding strategies—Full-Replica, Full-Sharding, and Partial-
Sharding—for each component within the model states (Pa-
rameters, Gradients, and Optimizer States). The introduced
sharding factors (s0p × s1p, s

0
g × s1g, s

0
os × s1os) control GPU and

device mesh sharding. Analyzing memory and communication
costs for each dimension, AMSP formulates an optimization
problem to find factors optimizing communication costs under
memory constraints. Additionally, it implements an execution
engine tailored for LLM training, and the customized commu-
nication and computation overlap strategy, incorporating these
flexible sharding factors to achieve optimized communication
efficiency during training. Compared to MiCS and ZeRO++,
AMSP improves the training throughput by 1.4− 12.7.
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Fig. 18. Training trace of LLaMA-7B on 32 NVIDIA A800 GPUs with a micro-batch size of 4096 tokens and micro-batch number of 2.

APPENDIX

A. Trace Analysis (7B)

We present the training traces during a single step for the
LLaMA-7B, LLaMA-13B, and LLaMA-30B models under the
DeepSpeed framework configurations of ZeRO-3, MiCS, and
ZeRO++, as well as under the AMSP framework with its op-
timal configuration, in Figure 18, Figure 19, and Figure 20,
respectively. For this analysis, we utilized a micro batch size of
4096 tokens and a micro batch number of 2 across 32 GPUs
for both the 7B and 13B models, while the training of the
30B model was conducted on 64 GPUs. Each GPU is equipped
with 80GB of memory, interconnected through NVLink within
a node. Inter-node communication is facilitated by 4 Mellanox
HDR InfiniBand connections without SHARP.
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Fig. 19. Training trace of LLaMA-13B on 32 NVIDIA A800 GPUs with a micro-batch size of 4096 tokens and micro-batch number of 2.

Fig. 20. Training trace of LLaMA-30B on 64 NVIDIA A800 GPUs with a micro-batch size of 4096 tokens and micro-batch number of 2.
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